1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
leannabustillo edited this page 2025-02-09 06:37:42 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, yewiki.org we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that uses reinforcement discovering to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial differentiating function is its reinforcement learning (RL) step, which was used to refine the design's actions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, eventually improving both relevance and wiki.rolandradio.net clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's equipped to break down complicated inquiries and reason through them in a detailed way. This directed thinking process enables the design to produce more accurate, transparent, and detailed responses. This model combines RL-based with CoT capabilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a versatile text-generation design that can be incorporated into numerous workflows such as representatives, sensible thinking and information analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, allowing effective inference by routing inquiries to the most relevant professional "clusters." This technique allows the model to concentrate on different problem domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, setiathome.berkeley.edu 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to imitate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent harmful material, and assess designs against key safety requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, create a limitation boost demand and connect to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Establish permissions to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, prevent damaging material, and assess models against key safety criteria. You can execute security measures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following steps: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The model detail page supplies necessary details about the design's capabilities, pricing structure, and implementation standards. You can find detailed use guidelines, including sample API calls and code bits for combination. The model supports different text generation tasks, including material creation, code generation, and question answering, utilizing its support discovering optimization and CoT thinking abilities. The page also includes release options and licensing details to assist you get begun with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be triggered to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For 89u89.com Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, enter a variety of instances (between 1-100). 6. For example type, choose your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production implementations, you might want to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can try out various prompts and change model specifications like temperature level and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, content for inference.

This is an excellent method to check out the design's reasoning and text generation abilities before integrating it into your applications. The playground supplies immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you fine-tune your prompts for ideal outcomes.

You can quickly check the design in the play area through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends a demand to generate text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical methods: utilizing the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you select the technique that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design web browser displays available designs, with details like the company name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if applicable), suggesting that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the design details page.

    The design details page consists of the following details:

    - The design name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's suggested to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the instantly produced name or produce a custom-made one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of instances (default: 1). Selecting suitable circumstances types and counts is vital for expense and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and archmageriseswiki.com making certain that network seclusion remains in place.
  4. Choose Deploy to release the design.

    The release procedure can take numerous minutes to finish.

    When release is complete, your endpoint status will change to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model using Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases.
  5. In the Managed implementations section, find the endpoint you want to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and archmageriseswiki.com SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious services utilizing AWS services and sped up calculate. Currently, he is focused on developing strategies for fine-tuning and optimizing the reasoning performance of big language designs. In his complimentary time, Vivek enjoys treking, viewing films, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing solutions that help consumers accelerate their AI journey and unlock organization worth.